The hoverfly can perceive electrical fields around the edges of the petals, the big white stigma, and the stamens. (Courtesy Photo / Bob Armstrong)

The hoverfly can perceive electrical fields around the edges of the petals, the big white stigma, and the stamens. (Courtesy Photo / Bob Armstrong)

On the Trails: Electric flowers and platform plants

You cannot see it, it’s electric.

Many plants produce flowers as a way of attracting animal visitors that can pick up pollen and move it to another flower. Flowers come in an array of colors — all the wavelengths we can see plus ultraviolet (which most humans cannot see). A yellow flower with a UV pattern is readily distinguishable from other yellow flowers — to the many kinds of animals (including insects and hummingbirds) that can see UV. That’s been known for many years.

However, flowers actually have (at least) two ways of enhancing their distinctiveness that humans generally cannot detect without special equipment. More recent research has found that plants can exploit another sensory system of animals.

There is a natural electric gradient from the ground (negative) up into the atmosphere (positive). And around every plant and its flowers there is a weak electrical field. Flowers have a negative charge (like the earth they come from), but they bloom in positively charged air, creating a little electrical field. Around the flowers that electrical field is strengthened: the electric effect is best developed around edges, such as the rims of petals and the inner (sexual) parts of the flower. So the size and shape of the flower is emphasized and made even more distinctive.

Bumblebees and other insects can detect the presence and shape of the floral electrical fields and use the information to decide which flowers to visit. Bees detect the electrical fields with their fuzzy hairs. The floral electrical fields are weak, but they are strong enough to deflect the hairs (just a wee fraction of a degree) and set off neural signals that the bees can interpret. Bees’ antennae can detect the fields too but no neural signal is sent on. Experiments with artificial flowers (identical in color, shape, and size) with and without nectar rewards and with and without electrical fields around them showed that bees quickly learn to choose the rewarding, electrical flowers.

Further research revealed that hoverflies, which are also important pollinators, can also do this well. Their body hairs are deflected by small electrical fields and a neural signal is sent. The flies learn to read the signal and their efficiency and speed of finding floral nectar rewards increases.

Electricity also helps move pollen from floral anthers to insects, because insects have a positive charge and the flower a negative one. So loose pollen can actually jump small distances from anther to insect, even before the bug lands. If the plant is lucky, the insect carries the pollen to another flower. If not, a bee may groom the pollen off its body and packs it away in its pollen baskets to feed bee larvae.

Plants are commonly used as platforms for transmitting vibrational signals, usually among themselves. For example, treehoppers suck plant sap, often gathering in considerable numbers on plants. The treehoppers contract their abdominal muscles very fast, creating surface vibrations that move over the plant. We can’t hear them without the aid of special devices, but the vibes are picked up by the legs of other treehoppers. Those vibrations are like songs, varying in pitch and tempo, and are clearly interpreted by the receivers.

Some songs are used for courtship, drawing male and female closer together; a second male can jam the first male’s songs and decrease a female’s response, thus interfering with the courtship. Baby treehoppers (called nymphs) emit cries of alarm when danger is perceived; this elicits defensive behavior of the mother, who signals after evicting a predator, calming the nymphs.

Lots of other insects (and spiders) can communicate with each other using plant vibrations. Many female insects use variation in male vibrations to choose the right species and the best male to mate with. It goes the other way too: males can use female vibrations to discriminate among females. Insects such as katydids make sounds we can hear, but they also make vibrational signals that indicate body size, and females prefer larger males.

This public domain image shows a katydid on a red flower. Insects such as katydids make sounds people can hear, but they also make vibrational signals that indicate body size, and females prefer larger males. (Sheila Brown)

This public domain image shows a katydid on a red flower. Insects such as katydids make sounds people can hear, but they also make vibrational signals that indicate body size, and females prefer larger males. (Sheila Brown)

Leaf-cutter ants create vibrations when chewing into leaves; if it’s a really good leaf for growing fungi to feed the colony, the distinctive vibrations can recruit other foraging ants to exploit the good resource. The larvae of some insects use vibrations to attract others of the same kind or to keep competitors away.

A typical range of transmission for most of these vibrational signals is up to about two meters, although it can be longer for large insects and spiders. All vibrational calling is energetically expensive, and some studies have shown that an insect that calls a lot is not likely to live as long as one that calls infrequently. The host plants that provide the platform have different vibrational properties, so they differ in their signal transmission capacity.

Some plant-based vibrations are not meant as communication among members of the same species. Vibrations produced by feeding, for instance, can be risky if it attracts predators—and lots of potential predators can track such vibrations. For example, a feeding caterpillar inadvertently gives vibrational cues to a predatory stinkbug and perhaps to parasitic wasps. In contrast, some butterfly caterpillars vibrate along with chemical signals to call in mutualistic ants to provide protection from predators. And there’s a spider that mimics the vibrational signals of the males of other species, to lure females of those species into hunting range for the mimicker.

Clearly, plants do far more than most of us ever imagined! That’s just a sample of sensory worlds that humans cannot experience directly. We miss a lot!

The stories of electric flowers and singing tree hoppers came mainly from a fascinating book about the sensory world of animals (“An Immense World,” by Ed Yong).

• Mary F. Willson is a retired professor of ecology. “On the Trails” appears every Wednesday in the Juneau Empire.

More in News

(Juneau Empire file photo)
Aurora forecast through the week of Feb. 1

These forecasts are courtesy of the University of Alaska Fairbanks’ Geophysical Institute… Continue reading

Two flags with pro-life themes, including the lower one added this week to one that’s been up for more than a year, fly along with the U.S. and Alaska state flags at the Governor’s House on Tuesday. (Mark Sabbatini / Juneau Empire)
Doublespeak: Dunleavy adds second flag proclaiming pro-life allegiance at Governor’s House

First flag that’s been up for more than a year joined by second, more declarative banner.

Students play trumpets at the first annual Jazz Fest in 2024. (Photo courtesy of Sandy Fortier)
Join the second annual Juneau Jazz Fest to beat the winter blues

Four-day music festival brings education of students and Southeast community together.

Frank Richards, president of the Alaska Gasline Development Corp., speaks at a Jan. 6, 2025, news conference held in Anchorage by Gov. Mike Dunleavy. Dunleavy and Randy Ruaro, executive director of the Alaska Industrial Development and Export Authority, are standing behind RIchards. (Yereth Rosen/Alaska Beacon)
For fourth consecutive year, gas pipeline boss is Alaska’s top-paid public executive

Sen. Bert Stedman, R-Sitka, had the highest compensation among state legislators after all got pay hike.

Juneau Assembly Member Maureen Hall (left) and Mayor Beth Weldon (center) talk to residents during a break in an Assembly meeting Monday, Feb. 3, 2025, about the establishment of a Local Improvement District that would require homeowners in the area to pay nearly $6,300 each for barriers to protect against glacial outburst floods. (Mark Sabbatini / Juneau Empire)
Flood district plan charging property owners nearly $6,300 each gets unanimous OK from Assembly

117 objections filed for 466 properties in Mendenhall Valley deemed vulnerable to glacial floods.

(Michael Penn / Juneau Empire file photo)
Police calls for Sunday, Feb. 2, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Saturday, Feb. 1, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Friday, Jan. 31, 2025

This report contains public information from law enforcement and public safety agencies.

University of Alaska President Pat Pitney gives the State of the University address in Juneau on Jan. 30, 2025. She highlighted the wide variety of educational and vocational programs as creating opportunities for students, and for industries to invest in workforce development and the future of Alaska’s economy. (Corinne Smith/Alaska Beacon)
University of Alaska president highlights impact on workforce, research and economy in address

Pat Pitney also warns “headwinds” are coming with federal executive orders and potential budget cuts.

Most Read