This photo available under the Creative Commons license shows a New Mexico whiptail. The lizards are obligately parthenogenetic(capable of reproduction without fertilization) and unisexual (female). (Courtesy Photo / Greg Schechter)

This photo available under the Creative Commons license shows a New Mexico whiptail. The lizards are obligately parthenogenetic(capable of reproduction without fertilization) and unisexual (female). (Courtesy Photo / Greg Schechter)

On the Trails: Parthenogenesis in vertebrates

There’s another way to be a single parent.

By Mary F. Willson

When we talk of “single parents,” we refer to a family that has only a mother (or sometimes only a father) raising the offspring. But there’s another way to be a single parent — when an individual makes the offspring all by itself, with no participation of anybody else at any stage. There are many examples of plants and invertebrates that can produce offspring by splitting off pieces of themselves, and the pieces grow into new individuals. Or, they reproduce by parthenogenesis (“virgin birth”): a fatherless embryo develops without a sperm joining an egg to start the process and the unfertilized eggs develop directly into a zygote and then an embryo.

Among the vertebrates, however, parthenogenesis is relatively rare. There are no known cases of scientifically documented, natural parthenogenesis in mammals. However, parthenogenesis has been artificially, experimentally induced in a variety of species, although the embryo usually develops abnormally and dies.

Parthenogenesis in birds is apparently very rare. It’s known in domestic turkeys, chickens, and pigeons and in captive zebra finches, but the embryos don’t develop normally and generally die before hatching. However, two California condors in the San Diego zoo each produced a viable male chick that had no father; the chicks lived for a few years but died before reproducing. Those females made fatherless chicks even though they shared their captivity with males.

Some reptiles are obligately parthenogenetic and unisexual (female), including some Asian geckos and North American whiptail lizards. At least some of these types arose (and are still arising, presumably) via hybridization of sexual species, leading to polyploidy (multiple sets of chromosomes per cell, not just the usual two sets). Interestingly, although the whiptail populations are all-female, if one female acts like a male (why would she do that?) by courting and mounting another female, more eggs are produced than in the absence of that behavior (because of hormones that control behavior and response). Still other reptiles are known to be parthenogenetic at least occasionally, including snakes such as pythons, boas, rattlesnakes, cottonmouths and copperheads, and monitor lizards such as the Komodo dragon.

Among amphibians, parthenogenesis is well-known in salamanders and certain frogs, often the result of hybridization and polyploidy. Some odd variations occur, creating a mix of parthenogenesis and sexuality (sometimes called incomplete parthenogenesis): In some cases, the sperm of a sexual species is needed to start egg division and embryo development, but no male genes are transferred. In other cases, the sperm of a sexual species fertilizes the egg and an embryo develops, but when they mature and reproduce, they do not pass on the male’s genes. And sometimes, at least some male genetic material (DNA) of a sexual species mysteriously combines with the DNA of the female, and is passed on jointly, not as separate chromosomes.

Parthenogenetic, unisexual offspring have been reported for several species of shark; in these cases, the mothers (being flexible) can probably also make offspring in the usual, sexual way. Among the bony fishes, parthenogenesis and unisexuality are the regular thing in the Texas silversides, the Amazon molly and a hybrid live-bearing topminnow in Mexico, for example, and they occur also in some populations of several others, including the pond loach of Asia and the Australian carp gudgeon.

Are there advantages to parthenogenesis? One advantage is that females can produce offspring, passing on their genes, even if males are scarce and unavailable. Another advantage is that the females don’t share parenthood with males, they pass on just their own genes; their offspring are very much like their mothers, often virtually identical. However, they generally sacrifice the advantages of sexual recombination of genes, which generates variation. Such variation is considered to be useful: by producing varied offspring, there is a higher chance that some will survive when the environment is (as usual) likewise variable.

So, one would expect to find cases of natural parthenogenesis when and where the environments are not very variable, or males are very hard to find. Good data are needed: The adaptiveness of parthenogenesis in the ecology of each species that reproduces this way needs further documentation.

• Mary F. Willson is a retired professor of ecology. “On the Trails” appears every Wednesday in the Juneau Empire.

More in News

(Juneau Empire file photo)
Aurora forecast through the week of Feb. 1

These forecasts are courtesy of the University of Alaska Fairbanks’ Geophysical Institute… Continue reading

Two flags with pro-life themes, including the lower one added this week to one that’s been up for more than a year, fly along with the U.S. and Alaska state flags at the Governor’s House on Tuesday. (Mark Sabbatini / Juneau Empire)
Doublespeak: Dunleavy adds second flag proclaiming pro-life allegiance at Governor’s House

First flag that’s been up for more than a year joined by second, more declarative banner.

Students play trumpets at the first annual Jazz Fest in 2024. (Photo courtesy of Sandy Fortier)
Join the second annual Juneau Jazz Fest to beat the winter blues

Four-day music festival brings education of students and Southeast community together.

Frank Richards, president of the Alaska Gasline Development Corp., speaks at a Jan. 6, 2025, news conference held in Anchorage by Gov. Mike Dunleavy. Dunleavy and Randy Ruaro, executive director of the Alaska Industrial Development and Export Authority, are standing behind RIchards. (Yereth Rosen/Alaska Beacon)
For fourth consecutive year, gas pipeline boss is Alaska’s top-paid public executive

Sen. Bert Stedman, R-Sitka, had the highest compensation among state legislators after all got pay hike.

Juneau Assembly Member Maureen Hall (left) and Mayor Beth Weldon (center) talk to residents during a break in an Assembly meeting Monday, Feb. 3, 2025, about the establishment of a Local Improvement District that would require homeowners in the area to pay nearly $6,300 each for barriers to protect against glacial outburst floods. (Mark Sabbatini / Juneau Empire)
Flood district plan charging property owners nearly $6,300 each gets unanimous OK from Assembly

117 objections filed for 466 properties in Mendenhall Valley deemed vulnerable to glacial floods.

(Michael Penn / Juneau Empire file photo)
Police calls for Sunday, Feb. 2, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Saturday, Feb. 1, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Friday, Jan. 31, 2025

This report contains public information from law enforcement and public safety agencies.

University of Alaska President Pat Pitney gives the State of the University address in Juneau on Jan. 30, 2025. She highlighted the wide variety of educational and vocational programs as creating opportunities for students, and for industries to invest in workforce development and the future of Alaska’s economy. (Corinne Smith/Alaska Beacon)
University of Alaska president highlights impact on workforce, research and economy in address

Pat Pitney also warns “headwinds” are coming with federal executive orders and potential budget cuts.

Most Read