Seeing what we can’t: How vertebrates use ultraviolet vision

Seeing what we can’t: How vertebrates use ultraviolet vision

Fish, birds and some mammals use UV.

First, some basics: Vision depends on light, which comes in a spectrum of wavelengths, ranging from very long to very short.

Vertebrate eyes have two kinds of light receptors in the retina at the back of the eye: Rods, which are sensitive at low light levels, and cones, which are stimulated at higher light levels and function in color vision.

Humans, and a few other mammals, have three types of cones; each type is receptive to a different range of wavelengths with peak sensitivity in the middle of the range. One type of cone deals with long wavelengths toward the red end of — what we call — the visible spectrum; other cones are sensitive to medium-long wavelengths in the middle part of the spectrum. The third type of cone is sensitive to short wavelengths, in the blue-violet end of the spectrum. Still shorter wavelengths, outside of the normal human visible spectrum, we call ultraviolet. Humans and some other mammals have cones that are slightly sensitive to UV light, but the lenses filter it out.

[Wild Shots: Photos of Mother Nature in Alaska]

However, lots of birds, fish and reptiles have a fourth kind of cone that is UV-sensitive. Even a few mammals — e.g., some rodents and bats — can see UV light quite well. Furthermore, some mammals have lenses that don’t filter UV wavelengths, so they can use UV to some extent — examples include hedgehogs, dogs, cats and ferrets, among others. Day-hunting snakes have lenses that block UV wavelengths, but night-hunting snakes have lenses that transmit UV. For these animals, just a little extra light might enhance vision in some conditions.

I’d love to be able to present a survey of all the vertebrates, not only about who has UV vision, but also to find possible correlations of UV sensitivity with the ecology, behavior, and evolutionary history of the species. But such a systematic survey does not exist. Part of the problem lies in the complexity of what determines the sensitivity; several factors are involved. The animal must possess the visual receptor cells — typically cones. Those cones must also be functional; that is, they must not be turned off by genetic mutations. The UV wavelength must actually reach the retina, not be filtered out by lens, cornea or other structures.

Apparently, only seldom have enough of those features been measured in enough animals allow a wide search for correlations with ecology, behavior and evolutionary history.

There is still a further question: If an animal can see UV, how is it useful to the animal? This is often difficult to determine, and suggestions outnumber the answers.

Here are a few bits and pieces:

UV sensitivity may be useful in foraging: Several studies have suggested that birds of prey that hunt small mammals may key in on trails left by the mammals as they scent-mark with reflective urine, although another study showed that vole urine is not very reflective in the UV range. It is possible that UV-sensitivity helps locate ripe fruits or insect prey because the UV reflectance of fruit and some insects differs from that of background leaves. But how often this works in the natural world is uncertain. Hummingbirds can see in the UV range. Many flowers either reflect or absorb UV, and hummers may use that ability to discriminate among flowers that they might visit and pollinate.

Among bats, a mutation causing loss of functional short-wave light sensitivity is found in nocturnal species that commonly roost in caves and echo-locate, using sonar to navigate and capture prey. Researchers suggest that perhaps using sonar pre-empts brain space otherwise used for UV perception. However, the correlation is not so clear, because the loss also occurs in fruit bats, which roost in trees and do not echolocate.

[Welcome to Howard Pass]

Decent data are more available for the use of UV reflectance and sensitivity in social situations in birds, fish and reptiles with good color vision. For example, male mountain bluebirds have more UV-reflective plumage than females, and males that reflect more UV are more successful in mating and siring offspring. Similarly, female sticklebacks and guppies perceive UV and prefer to associate with males that have good UV reflectance. Another study showed that lizards living in light, UV-rich habitats have social displays that convey signals in the UV range, while those in dark habitats do not.

I’ve left mention of amphibians to the end, because that story gets more complicated. It seems that many amphibians can see color in the dark. They have two kinds of rods that are sensitive at low-light levels in addition to cones; some of those rods are UV sensitive. Could that be true of some other vertebrates too?

This leaves UV vision in insects and spiders and other invertebrates for another story (maybe).

• Mary F. Willson is a retired professor of ecology. “On The Trails” is a weekly column that appears every Wednesday.

Seeing what we can’t: How vertebrates use ultraviolet vision

More in News

(Juneau Empire file photo)
Aurora forecast through the week of Feb. 1

These forecasts are courtesy of the University of Alaska Fairbanks’ Geophysical Institute… Continue reading

Two flags with pro-life themes, including the lower one added this week to one that’s been up for more than a year, fly along with the U.S. and Alaska state flags at the Governor’s House on Tuesday. (Mark Sabbatini / Juneau Empire)
Doublespeak: Dunleavy adds second flag proclaiming pro-life allegiance at Governor’s House

First flag that’s been up for more than a year joined by second, more declarative banner.

Students play trumpets at the first annual Jazz Fest in 2024. (Photo courtesy of Sandy Fortier)
Join the second annual Juneau Jazz Fest to beat the winter blues

Four-day music festival brings education of students and Southeast community together.

Frank Richards, president of the Alaska Gasline Development Corp., speaks at a Jan. 6, 2025, news conference held in Anchorage by Gov. Mike Dunleavy. Dunleavy and Randy Ruaro, executive director of the Alaska Industrial Development and Export Authority, are standing behind RIchards. (Yereth Rosen/Alaska Beacon)
For fourth consecutive year, gas pipeline boss is Alaska’s top-paid public executive

Sen. Bert Stedman, R-Sitka, had the highest compensation among state legislators after all got pay hike.

Juneau Assembly Member Maureen Hall (left) and Mayor Beth Weldon (center) talk to residents during a break in an Assembly meeting Monday, Feb. 3, 2025, about the establishment of a Local Improvement District that would require homeowners in the area to pay nearly $6,300 each for barriers to protect against glacial outburst floods. (Mark Sabbatini / Juneau Empire)
Flood district plan charging property owners nearly $6,300 each gets unanimous OK from Assembly

117 objections filed for 466 properties in Mendenhall Valley deemed vulnerable to glacial floods.

(Michael Penn / Juneau Empire file photo)
Police calls for Sunday, Feb. 2, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Saturday, Feb. 1, 2025

This report contains public information from law enforcement and public safety agencies.

(Michael Penn / Juneau Empire file photo)
Police calls for Friday, Jan. 31, 2025

This report contains public information from law enforcement and public safety agencies.

University of Alaska President Pat Pitney gives the State of the University address in Juneau on Jan. 30, 2025. She highlighted the wide variety of educational and vocational programs as creating opportunities for students, and for industries to invest in workforce development and the future of Alaska’s economy. (Corinne Smith/Alaska Beacon)
University of Alaska president highlights impact on workforce, research and economy in address

Pat Pitney also warns “headwinds” are coming with federal executive orders and potential budget cuts.

Most Read